
R E V I E W Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the 
licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​​:​/​/​​c​r​e​a​​t​i​​
v​e​c​​o​m​m​​o​n​s​.​​o​r​​g​/​l​​i​c​e​​n​s​e​s​​/​b​​y​-​n​c​-​n​d​/​4​.​0​/.

Deng et al. Stem Cell Research & Therapy          (2025) 16:167 
https://doi.org/10.1186/s13287-025-04285-7

Alzheimer’s disease (AD), Parkinson’s disease (PD), and 
Amyotrophic lateral sclerosis (ALS), among others, have 
a substantial impact on an individual’s quality of life and 
pose a significant burden on society [1]. These neurode-
generative diseases share common underlying mecha-
nisms, including protein aggregation, oxidative stress, 
inflammation, apoptosis, and mitochondrial dysfunc-
tion, all of which contribute to neuronal loss [2]. Cellu-
lar senescence plays a crucial role in neurodegenerative 
disorders and is considered a potential underlying cause. 
Senescent cells contribute to the onset and advancement 
of these diseases through various mechanisms [3]. As a 
key indicator of aging, cellular senescence is defined by 
permanent cell cycle arrest and a reduction in cellular 
functions [4]. This process is not limited to somatic cells, 
but also encompasses stem cells, including neural stem 

Introduction
The natural process of growing older involves a gradual 
deterioration of bodily functions, which significantly 
increases an organism’s vulnerability to various age-
related illnesses, particularly disorders affecting the 
nervous system. Neurodegenerative diseases, including 
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Abstract
Neurodegenerative diseases including Alzheimer’s and Parkinson’s disease are age-related disorders which severely 
impact quality of life and impose significant societal burdens. Cellular senescence is a critical factor in these 
disorders, contributing to their onset and progression by promoting permanent cell cycle arrest and reducing 
cellular function, affecting various types of cells in brain. Recent advancements in regenerative medicine have 
highlighted “R3” strategies—rejuvenation, regeneration, and replacement—as promising therapeutic approaches 
for neurodegeneration. This review aims to critically analyze the role of cellular senescence in neurodegenerative 
diseases and organizes therapeutic approaches within the R3 regenerative medicine paradigm. Specifically, 
we examine stem cell therapy, direct lineage reprogramming, and partial reprogramming in the context 
of R3, emphasizing how these interventions mitigate cellular senescence and counteracting aging-related 
neurodegeneration. Ultimately, this review seeks to provide insights into the complex interplay between cellular 
senescence and neurodegeneration while highlighting the promise of cell-based regenerative strategies to address 
these debilitating conditions.
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cells (NSCs). When these cells age, their regenerative 
capacity -essential for maintaining tissue homeostasis 
and repair- declines [5]. 

In regenerative medicine, there are three major thera-
peutic categories known collectively as the “R3” para-
digm [6, 7]: (1) Rejuvenation—restoring the functional 
capacity of existing cells or reversing cellular aging pro-
cesses; (2) Regeneration—stimulating repair or regrowth 
of tissues using stem cells or host repair mechanisms; 
and (3) Replacement—directly substituting lost or dam-
aged cells with functional ones.

The objective of this review is twofold: (1) to critically 
analyze the processes of cellular senescence that con-
tribute to neurodegenerative disorders, and (2) to dis-
cuss cell-based strategies in the R3 context. In recent 
years, remarkable advancements have been made in the 
field of regenerative medicine. By integrating R3 con-
cepts, we distinguish how certain approaches focus on 
rejuvenation, some on regeneration, and others on out-
right replacement. These strategies aim to counteract the 
effects of aging and mitigate neurodegeneration by spe-
cifically targeting the underlying mechanisms of aging, 
such as cellular senescence.

This review comprehensively examines the mecha-
nisms of cellular senescence and explores potential R3 
strategies. Specifically, it summarizes the role of cellular 
senescence in neurodegenerative diseases, highlighting 
its contributions to disease onset, progression accelera-
tion, and the hindrance of traditional treatment effective-
ness. Additionally, various cell-based strategies, such as 
stem cell therapy, direct lineage reprogramming, and par-
tial reprogramming, are explored. Their potential benefits 
and challenges in treating neurodegenerative diseases are 
evaluated, with a focus on how these strategies may tar-
get senescent cells to restore functionality (rejuvenation), 
enhance endogenous repair (regeneration), or replace 
lost neurons (replacement). By delving into these under-
lying mechanisms and investigating innovative therapeu-
tic approaches, we aim to pave the way for more effective 
treatments that can enhance patients’ quality of life and 
potentially delay or even reverse the aging process.

Cellular senescence and neurodegenerative 
diseases
The association between cellular senescence and 
neurodegenerative diseases
In neurodegenerative diseases such as AD, PD, and ALS, 
various cell types within the brain undergo aging-related 
changes that play a crucial role in initiating and driv-
ing disease progression. Neurons, glial cells (including 
microglia and astrocytes), and NSCs all exhibit senes-
cence-like phenotypes during both physiological aging 
and neurodegeneration [8]. These changes contribute to 
the complex pathogenesis of these disorders (Fig. 1).

Neurons  Neurons, which have limited regenerative 
capacity, are highly susceptible to aging-related dam-
age. Interestingly, although neurons were traditionally 
regarded as exempt from senescence due to their post-
mitotic nature, recent evidence shows that they can in fact 
enter senescence in response to multiple stressors such as 
oxidative stress and DNA damage [9, 10]. For instance, 
the loss of SATB1, a DNA binding protein associated with 
PD, has been shown to activate a cellular senescence tran-
scriptional program in dopaminergic neurons, suggest-
ing neuronal senescence as a contributing factor to PD 
pathology [11]. Senescent neuronal cells accumulate with 
age and exhibit characteristics such as cell cycle arrest, 
pro-inflammatory secretory phenotype, and altered pro-
teostasis, which can exacerbate neuroinflammation and 
oxidative stress, leading to cognitive decline and neuronal 
degeneration [12, 13]. This neuronal senescence phenom-
enon has led to increased interest in senolytic therapies 
specifically targeting neurons. Such therapies aim to 
selectively eliminate senescent neurons or modulate their 
harmful effects on neuronal function [14, 15]. Prelimi-
nary studies have shown promising results, with senolytic 
treatments blocking disease progression in mouse mod-
els of tau - mediated neurodegeneration by acting on 
affected neurons and improving outcomes in SARS-CoV-
2-induced neuropathology involving neuronal damage 
[14, 15]. Nonetheless, further research is needed to thor-
oughly investigate the occurrence of neuronal senescence 
and evaluate the long-term safety and efficacy of senolytic 
treatments in neurodegenerative diseases [16].

Glia cells  Glia cells, particularly microglia and astro-
cytes, are crucial components of the central nervous 
system (CNS) that significantly contribute to the patho-
genesis of neurodegenerative diseases. Microglia, the 
primary immune cells of the CNS, undergo age-related 
and senescence-driven changes that profoundly impact 
the onset and progression of these disorders [16]. In PD, 
for example, reactive microglia have been observed in the 
substantia nigra and striatum, accompanied by elevated 
levels of pro-inflammatory cytokines [17]. These changes 
in microglial function can lead to chronic neuroinflam-
mation, exacerbating neuronal damage and accelerating 
disease progression.

Astrocytes, once considered merely supportive cells, are 
now recognized as active participants in various complex 
CNS functions. Like microglia, astrocytes also experi-
ence age-related changes that can influence the develop-
ment and progression of neurodegenerative diseases [17]. 
These changes may include alterations in astrocyte mor-
phology, reactivity, and their ability to provide metabolic 
support to neurons. Astrocytes are also integral to main-
taining the integrity and function of the blood-brain bar-
rier (BBB), forming part of the neurovascular unit along 
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with brain microvascular endothelial cells (BMVECs), 
pericytes, and neurons [18]. Senescent astrocytes sig-
nificantly contribute to neurodegenerative processes and 
linked to cognitive decline [19, 20]. The accumulation 
of senescent astrocytes in the aging brain, characterized 
by lamin-B1 reduction and nuclear deformations, may 
lead to astrocyte dysfunctions and subsequent neurode-
generation [21]. Their ability to support neuronal sur-
vival, clear neurotransmitters, and remove toxic protein 
aggregates, which are essential for maintaining a healthy 
CNS environment, is reduced [19]. Interestingly, senes-
cent astrocytes display a unique transcriptome distinct 
from reactive astrocytes, with dysregulated pathways 
and downregulation of brain-expressed genes involved 

in neuronal development and differentiation [22, 23]. 
Contradictory to their normal protective role, senescent 
astrocytes exhibit impaired astrocytic responses to injury 
and decreased expression of genes involved in antigen 
processing and presentation [22]. Targeting senescent 
astrocytes and their associated pathways presents a 
promising approach for developing therapies to counter 
age-related neurodegeneration and improve brain health 
[24, 25].

The accumulation of senescent cells in the brain, 
including oligodendrocytes, contributes to age-related 
pathologies and neurodegeneration [9]. Oligodendro-
cytes, specialized glial cells in the CNS, are crucial for 
maintaining neuronal health and function, not just for 

Fig. 1  Impact of cellular senescence and inflammation on neurodegeneration. This figure depicts the progression of neurodegenerative diseases driven 
by cellular senescence. Key processes include the activation of senescent markers (p65, p53, p16, p21) in astrocytes, which release senescence-associated 
secretory phenotype (SASP) factors (TNFα, iNOS, IL-1β, IL-6, IL-12, IL-23) that intensify neuroinflammation. Blood-brain barrier (BBB) breakdown leads to 
neutrophil and leukocyte infiltration, further contributing to inflammation. Microglia activation and the presence of senescent oligodendrocytes result 
in additional neuronal damage, characterized by Aβ plaque deposition, tau hyperphosphorylation, and myelin degradation, all of which are hallmarks of 
neurodegeneration
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myelination. Recent evidence shows that oligodendrocyte 
dysfunction, such as senescence, significantly contributes 
to neurodegenerative processes. Senescent oligodendro-
cytes can produce SASPs, fostering chronic inflamma-
tion and oxidative stress, which lead to progressive CNS 
demyelination, microglial inflammation, and further 
neurodegeneration [26]. Importantly, the finding that 
deletion of the p21CIP1 pathway ameliorated the disease, 
while blocking microglial inflammation did not prevent 
neurodegeneration in demyelinating disorders suggests 
that senescence, particularly of oligodendrocytes, is a key 
factor in driving neurodegeneration. This contradicts the 
traditional view that microglial inflammation is the sole 
primary driver and highlights the significance of directly 
targeting senescent oligodendrocytes as potential thera-
peutic targets [26].

Pericytes  Senescent pericytes also play a significant role 
in neurodegenerative processes, contributing to brain 
aging and neurological disorders. Pericytes, located 
within the neurovascular unit, are crucial for maintain-
ing BBB integrity, regulating cerebral blood flow, and sup-
porting overall brain health [27, 28]. As pericytes become 
senescent, they exhibit characteristic features such as 
increased β-galactosidase activity, cell cycle arrest, and 
enhanced expression of SASP factors [29]. These changes 
can lead to BBB dysfunction, reduced cerebral blood flow, 
and impaired clearance of toxic cellular by-products [30]. 
Understanding the molecular mechanisms of pericyte 
senescence and its impact on the neurovascular unit is 
essential for developing targeted therapies to combat neu-
rodegenerative disorders and enhance brain health during 
aging.

Neural stem cells (NSCs)  NSCs are pivotal for brain 
function and maintenance, yet their senescence is closely 
linked to neurodegenerative processes. Amyloid-β (Aβ), a 
pathogenic protein associated with AD, has been shown 
to accelerate cellular senescence in human NSCs [31]. 
This process involves enhanced expression of senes-
cence-related genes, increased senescence-associated-
β-galactosidase (SA-β-gal) activity, and activation of the 
DNA damage response [31]. Interestingly, reprogram-
ming of human fibroblasts into induced NSCs (iNSCs) 
using miR-302a has demonstrated promising results in 
combating cellular aging and improving cognitive per-
formance in AD models [32]. These miR-302a-hiNSCs 
showed delayed aging, increased resistance to oxidative 
stress, and improved cognitive function when implanted 
into senescence-accelerated mice [32]. This contradicts 
the notion that all NSCs are susceptible to senescence 
and suggests that certain reprogramming techniques may 
offer therapeutic potential.

Endothelial cells  Senescent endothelial cells signifi-
cantly influence neurodegenerative processes by contrib-
uting to age-related vascular and neurological disorders. 
The accumulation of these cells can lead to endothelial 
dysfunction, which is associated with conditions such 
as atherosclerosis, diabetes mellitus, hypertension, and 
ischemic injury [33]. Senescent endothelial cells display a 
distinct SASP, characterized by the release of pro-inflam-
matory cytokines, chemokines, and proteases that disrupt 
the local microenvironment. Unlike in normal, healthy 
endothelial cells, the SASP in senescent ones initiates a 
cascade of events that can lead to tissue dysfunction and 
further exacerbate the aging process at the local level. This 
unique secretory behavior of senescent endothelial cells 
thus becomes a crucial focus when studying the mecha-
nisms underlying age-related pathologies and potential 
therapeutic interventions [34]. For example, exposure 
to neurotoxic amyloid β (Aβ1–42) oligomers can induce 
a senescence phenotype in human brain microvascular 
endothelial cells (HBMECs) [35]. This finding suggests a 
direct link between endothelial cell senescence and neuro-
degenerative diseases such as AD. Furthermore, senescent 
endothelial cells show alterations in morphological and 
nanomechanical properties, including increased mem-
brane stiffness and changes in adhesion properties, which 
may contribute to cerebrovascular dysfunction [35].

The challenges and limitations of traditional treatments 
for neurodegenerative diseases in the context of cellular 
senescence
Cellular senescence poses significant challenges to tra-
ditional treatments for neurodegenerative diseases. It 
involves multiple aspects that complicate the treatment 
process.

Senescent cell accumulation, apoptosis resistance, and SASP
The accumulation of senescent cells, their resistance 
to apoptosis, and the SASP are major issues. The SASP 
exacerbates neurodegeneration by creating a pro-inflam-
matory milieu that affects neighboring healthy cells. 
This not only leads to chronic inflammation and tissue 
dysfunction but also interferes with treatment efficacy. 
Senescent cells may respond differently to medications, 
impair neurogenesis, disrupt the BBB, and exhibit mito-
chondrial dysfunction. Moreover, senescence-associated 
epigenetic changes, cellular heterogeneity in affected 
brain regions, and reduced regenerative capacity of NSCs 
further compound the challenges in targeted treatment.

Drug delivery and uptake
In terms of drug delivery and uptake, cellular senescence 
causes changes in membrane permeability and the func-
tion of transport proteins. These cells have reduced mem-
brane permeability, affecting drug uptake and efficacy. 
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Altered endocytic activity in these cells, as seen in the 
blockage of clathrin-dependent receptor-mediated endo-
cytosis in senescent human diploid fibroblasts, impacts 
their ability to internalize drugs [36]. However, this 
reduced permeability can also be exploited for targeted 
drug delivery. Muñoz-Espín et al. describes an innova-
tive approach that takes advantage of the high lysosomal 
β-galactosidase activity in senescent cells to design a drug 
delivery system using galacto-oligosaccharides [37]. This 
method allows for preferential release of encapsulated 
drugs within senescent cells, improving efficacy and 
reducing side effects in non-senescent cells [37]. Addi-
tionally, changes in transport proteins can lead to altered 
drug distribution within the cell, resulting in subopti-
mal drug concentrations at the target sites [38]. Studies 
have shown that replicative senescence in renal proximal 
tubular epithelial cells (RPTECs) leads to changes in the 
expression of various transporters. Notably, the mRNA 
level of organic cation transporter 2 decreased rapidly 
with increasing passage numbers, indicating a significant 
impact of senescence on transporter expression [39]. Fur-
thermore, the uptake of fluorescent cationic substrates 
was reduced in SA-β-gal-positive RPTECs compared to 
SA-β-gal-negative cells, suggesting altered transporter 
function in senescent cells [39]. Besides, the regulation 
of drug transporter expression and activity can occur at 
various levels, including transcription, mRNA stability, 
translation, and post-translational modification, which 
may be influenced by the senescence process [40].

Drug-target interaction
Regarding drug-target interaction, the SASP can modify 
the expression or function of target proteins, interfere 
with intended drug-target interactions, and contribute to 
chronic inflammation and tissue dysfunction, potentially 
reducing the effectiveness of conventional treatments. 
Inflammatory cytokines and chemokines released as part 
of the SASP can alter signaling pathways, gene expression 
programs, and even cause conformational changes in 
drug targets like receptors or enzymes, making it difficult 
for drugs to bind effectively (41,42, 43). Traditional treat-
ment approaches for neurodegenerative diseases have 
limitations. These treatments often focus on alleviating 
symptoms or targeting specific aspects of the disease 
mechanism rather than addressing cellular senescence, 
the root cause. For instance, neurotransmitter-enhancing 
drugs for AD patients only provide symptomatic relief 
without tackling neuronal senescence issues [3, 44].

Disease heterogeneity
Disease heterogeneity is another challenge. Neurode-
generative diseases are highly heterogeneous in affected 
cell types and underlying molecular mechanisms, and 
cellular senescence exacerbates this. Different cell types 

in the brain, such as glial cells, endothelial cells, neural 
stem cells, and neurons, can exhibit various senescence-
like phenotypes and respond differently to treatments 
and interventions [8]. This heterogeneity is further com-
plicated by the fact that senescent cells may respond 
differently to genetic and pharmacological interven-
tions, known as senolytics or senomorphics [45]. Recent 
advancements, such as the machine learning program 
SenCID, have enabled the identification of six major 
senescence identities (SIDs) with different baselines, 
stemness, gene functions, and responses to senolytics 
[46]. This improved understanding of senescent cell het-
erogeneity may contribute to the effective treatments.

Lack of long-term efficacy
There is a lack of long-term efficacy in traditional treat-
ments. Many traditional therapies, like those for ALS, 
have limited long-term benefits. For example, Riluzole, 
approved in the 1990s, remains one of the few FDA-
approved treatments for ALS, offering only modest 
survival benefits. More recently, edaravone has been 
approved, but the search for effective therapies target-
ing disease progression is still desperately needed [47]. 
This lack of long-term efficacy highlights the need for 
more innovative treatment strategies that can address 
the underlying causes of cellular senescence and disease 
progression.

Cell-based R3 strategies for treating 
neurodegenerative disease
In this section, we discuss how “R3” approaches (Rejuve-
nation, Regeneration, and Replacement) can be applied 
to mitigate cellular senescence and aid in treating neuro-
degenerative disorders [48–50]. Specifically, we highlight 
stem cell therapy and cellular reprogramming (direct 
lineage reprogramming and partial reprogramming) as 
representative R3 modalities. These strategies aim to mit-
igate the effects of cellular senescence by (1) rejuvenating 
existing cells to restore youthful function, (2) regenerat-
ing neural tissues through stimulating or transplanting 
stem cells, or (3) replacing entirely lost neuronal popula-
tions with new, functional cells (Fig. 2).

Stem cell therapy
Stem cells are characterized by two key features: self-
renewal, which allows them to divide repeatedly; potency, 
which enables them to differentiate into various special-
ized cell types 5152, 53. Based on these properties, stem 
cells are categorized into totipotent, pluripotent, multi-
potent, or unipotent [51, 54]. Most mature human cells 
are highly differentiated, unable to divide, and are known 
as “post-mitotic cells” [55]. When these differentiated 
post-mitotic cells become senescent or die due to natural 
aging, injury, or disease, their regeneration depends on 
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Fig. 2  Overview of cell-based strategies for treating neurodegenerative diseases. This diagram summarizes cell-based strategies to treat neurodegenera-
tive diseases. Stem cells, including pluripotent stem cells (PSCs), mesenchymal stem cells (MSCs), and NSCs, may rejuvenate existing cells and regenerate 
or replace damaged ones by serving as sources for generating neural cell types like neurons, astrocytes, and oligodendrocytes. Non-neuronal cells can 
also be directly reprogrammed into neurons, bypassing the stem cell stage. Additionally, aged neural cells undergo transient reprogramming to a stem-
like state, promoting rejuvenation and potentially reversing age-related damage. These methods aim to produce functional neural cells that could replace 
or repair damaged cells in neurodegenerative conditions, helping to restore brain function and slow disease progression
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the activation of local stem cells, which replenishes the 
tissue with younger, healthy cells [56]. However, in the 
aging brain or neurodegenerative conditions, local stem 
cells often lose their regenerative potential [57]. Conse-
quently, stem cell therapy has emerged as a promising 
R3 approach for treating neurodegenerative conditions 
[58–61], by using stem cells or stem cell-derived neu-
rons/NSCs to repair or replace damaged and senescent 

neurons, thereby supporting neural function, regenera-
tion, and rejuvenation (Table 1).

Pluripotent stem cells (PSCs)
Cell sources  PSCs are a type of stem cell capable of dif-
ferentiating into any cell type in the body, making them 
highly valuable for therapeutic applications. PSCs can 
be derived from various sources, including embryonic 

Table 1  Summary of stem cell therapy for treating neurodegenerative disease
Therapy type Cell type 

transplanted
Dis-
ease 
type

Effect Therapy 
stage

Potential rejuvenation 
mechanism

References

PSCs-based mDA neurons, 
mDA progeni-
tor cells

PD Restores motor function, rein-
nervates host brain

Preclinical Neuronal replacement 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85

PSCs-based mDA neurons, 
mDA progeni-
tor cells

PD Symptom stabilized or im-
proved after implantation

Clinical Neuronal replacement 84, 85, 86, 87, 88, 89, 90

PSCs-based forebrain 
cholinergic 
neurons

AD Reduced pathology, improved 
cognitive function

Preclinical Neuronal replacement 99, 100

PSCs-based NSCs or NPCs AD Increased synaptic strength, 
improved memory

Preclinical Neuronal replacement, 
Neurogenesis

96, 97, 98

PSCs-based NSCs ALS Life extension, improved neuro-
muscular function and survival, 
neuroprotection

Preclinical Neuronal replacement, 
Neurotrophic Support

104, 105, 106, 107, 108.

MSCs-based MSCs AD Aβ degrading and anti-inflam-
matory, increase in hippocam-
pal synaptic density, enhances 
endogenous neurogenesis

Preclinical Neurogenesis, 
Anti-Neuroinflammation

128, 129, 131, 132

MSCs-based MSCs AD Feasible, safe, and well tolerated Clinical NA 129, 133, 134

MSCs-based BM-MSCs PD Enhance motor function Preclinical Neuronal replacement, 
Neurotrophic Support

135

MSCs-based UC-MSCs PD, 
HD, 
CA

Decrease in the sever-
ity of motor and non-motor 
symptoms

Clinical/ 
Preclinical

NA 137, 182

MSCs-based MSCs MS Decrease inflammation and en-
hance remyelination, leading to 
improved neurological function

Preclinical Anti-Neuroinflammation 138, 140, 141

MSCs-based MSCs ALS A slower progression of disease 
symptoms, improvements in 
motor abilities

Clinical NA 142, 143, 144, 145

NSCs-based NSCs ALS Delay disease onset and 
progression and extend overall 
survival

Preclinical Anti-Neuroinflammation, 
Neurotrophic Support

158, 159, 160

NSCs-based NSCs ALS No serious adverse reactions or 
accelerated disease progression

Clinical NA 161, 162, 163, 164, 165

NSCs-based NSCs MS Well-tolerated, feasible, and safe, 
and it helped slow the disease’s 
progression

Clinical NA 166, 167

NSCs-based NSCs PD Improved motor and non-motor 
functions and preserved dopa-
minergic neurons

Preclinical Neurotrophic Support, 
Neurogenesis

169, 170, 171, 175

NSCs-based NSCs PD No immune or adverse reac-
tions, and most patients showed 
varying degrees of motor 
improvement

Clinical NA 176, 177, 178

NSCs-based NSCs AD Enhance neuronal connectivity 
and metabolic activity

Preclinical Neurogenesis 179, 180, 181
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stem cells (ESCs) [62] and induced pluripotent stem cells 
(iPSCs)63, 64 65, 66. ESCs originate from the inner cell mass 
of blastocysts but raise ethical concerns due to embryos 
destruction [62]. iPSCs are generated by reprogramming 
adult somatic cells (e.g., skin fibroblasts) through tran-
scription factors (OCT4, SOX2, KLF4, and c-MYC) [63, 
64] or chemical compounds [65, 66] that reset the cells’ 
developmental clock, sharing many ESC-like properties 
while avoiding ethical issues. They allow for patient-spe-
cific therapies, as they can be created from the patient’s 
own cells, reducing the risk of immune rejection.

Neural cell differentiation from PSCs  Efficient dif-
ferentiation from PSCs into neurons is critical for stem 
cell replacement therapy against neurodegenerative dis-
eases. In this process, PSCs are induced into neuronal 
progenitors and further specified into specific neuronal 
subtypes using factors like brain-derived neurotrophic 
factor (BDNF), glial cell line-derived neurotrophic factor 
(GDNF), and others, tailored to produce dopaminergic 
(DA) neurons for PD treatment [67–69], cholinergic neu-
rons for AD treatment [70, 71], or motor neurons for ALS 
treatment [72, 73].

PSCs-based therapy  PSC-based therapies can function 
within the replacement dimension of the R3 paradigm 
by transplanting PSC-derived specialized neurons that 
restore lost neural functions and counteract disease pro-
gression [74]. In some cases, they may also promote reju-
venation or regeneration via paracrine signaling and local 
microenvironment modulation.

PD  In 2011 and 2017, pre-clinical studies established 
proof of concept for dopamine (DA) neurons derived 
from human ESCs (hESCs) and human induced PSCs 
(hiPSCs) [75, 76]. Later then, more pre-clinical studies 
reported that PSC-based therapy can contribute to the 
treatment of PD [77–85]. In 2018, a clinical trial com-
menced involving the surgical transplantation of alloge-
neic hiPSC-derived DAergic neuron precursors into the 
putamen of individuals with PD [86, 87]. In 2020, a study 
documented the clinical implantation of patient-derived 
midbrain dopaminergic (mDA) progenitor cells, differen-
tiated in vitro from autologous iPSCs, in a patient with 
idiopathic PD [88]. Ongoing clinical trials involving PSCs 
for PD have shown promise in terms of safety and efficacy 
[84, 85, 89, 90].

AD  Recent animal model studies have shown potential 
for PSC-based therapies to reduce pathology and enhance 
cognitive function [91–95]. Transplanting NSCs derived 
from mouse adult brains or PSCs into AD rodent mod-
els led to the generation of cholinergic neurons, increased 
synaptic strength, and improved memory performance 

[96, 97]. Additionally, hiPSC-derived NPCs and choliner-
gic neurons successfully survived and differentiated into 
cholinergic and GABAergic neurons in the host brain, 
leading to improved spatial memory [98–100].

ALS  Although iPCS is increasingly used in ALS research, 
the studies published so far have mainly focused on iPSC-
based ALS cellular models for disease mechanisms or 
drug screening [101–103]. Some studies utilizing iPSC-
derived NSC transplants in ALS mouse models have dem-
onstrated positive therapeutic effects, including extended 
lifespan, enhanced neuromuscular function, and neuro-
protection [104–108].

Despite the promise, PSC-based therapies face hurdles 
in aging-related contexts. One significant concern is that 
aberrant DNA methylation patterns and histone modi-
fications, which may be exacerbated by senescent cel-
lular environments, can lead to improper differentiation 
of PSCs into desired neuronal subtypes or reduce the 
functionality of the resulting cells [109]. Furthermore, 
tumorigenicity remains a critical risk, as PSCs can form 
teratomas if not carefully monitored. Advanced imag-
ing techniques and biomarkers are being developed to 
detect early signs of teratoma formation, but the risk 
persists during pre-clinical and clinical trials [110]. 
Immune rejection is another hurdle, as PSCs may elicit 
an immune response. Researchers are exploring modi-
fications to the epigenetic and genetic profiles of PSCs 
during reprogramming to reduce this risk [111, 112]. 
Moreover, functional integration into existing neural net-
works is challenging in an aged or degenerating brain. 
Studies suggest that applying specific electrical fields can 
enhance synapse formation between transplanted neu-
rons and native cells [113, 114], but achieving consistent 
and effective integration remains a challenge within the 
context of neurodegenerative diseases.

Mesenchymal stem cells (MSCs)
Cell sources  MSCs are multipotent stromal cells derived 
from various tissues, including bone marrow, adipose tis-
sue, and umbilical cord blood [115], and more recently, 
dental pulp. Bone marrow is the original and most exten-
sively studied source [116], known for its well-character-
ized MSCs. Adipose tissue provides a more accessible and 
abundant source [117], with less invasive extraction pro-
cedures compared to bone marrow. The umbilical cord is 
a non-invasive source that yields MSCs with high prolif-
erative capacity and immunomodulatory properties [118], 
while the placenta and amniotic fluid are rich in MSCs and 
offer potent regenerative properties in an ethically favor-
able context [119]. Dental pulp-derived MSCs have shown 
unique properties and promising results in pre-clinical 
studies for neurodegenerative diseases [120], demonstrat-
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ing enhanced neuroprotective and regenerative capabili-
ties compared to MSCs from traditional sources.

MSCs-based therapy  MSCs have the capacity to dif-
ferentiate into a variety of cell types such as osteoblasts, 
chondrocytes, adipocytes, and even neurons [121]. They 
show potential for mitigating senescence and promoting 
rejuvenation through the secretion of anti-inflammatory 
and neurotrophic factors, as well as exosomes [122–125]. 
Recent studies have underscored MSCs’ potential to 
enhance cognitive function and neuronal health in age-
related neurodegenerative diseases [126, 127].

AD  In AD models, MSCs have demonstrated the ability to 
reduce amyloid-beta plaques, accompanied by improve-
ments in cognitive functions, as observed in pre-clinical 
studies [128–132]. A Phase I clinical trial led by Kim et al. 
involved nine patients with mild-to-moderate AD, result-
ing in stabilization of cognitive decline and enhancement 
of cognitive function [129, 133, 134].

PD  In the context of PD, MSCs have been utilized to pro-
tect and preserve DA neurons. Pre-clinical studies have 
demonstrated that MSC transplantation can enhance 
motor function [135], attributed to their neuroprotective 
properties and their potential to differentiate into neuron-
like cells that can assimilate into existing neural pathways 
[136]. Moreover, a 2021 Phase I clinical trial studied intra-
venous infusion of umbilical cord MSCs (UC-MSCs) for 
PD treatment [137].

ALS and MS  MSC therapy may also help mitigate inflam-
mation and demyelination in ALS and MS [138, 139]. In 
ALS animal models, MSCs have decreased inflammation 
and promoted remyelination, improving neurological 
function [140, 141]. These promising animal study results 
have catalyzed clinical trials assessing MSC therapy’s 
effects in ALS patients, with early studies indicating safety 
and therapeutic benefits, including symptom stabilization 
and improvements in motor abilities and quality of life 
[142–145].

Despite their promise in aging-related neurodegenera-
tive diseases, several challenges remain. In an aging body, 
ensuring the long-term safety and consistent efficacy of 
MSC therapies is of utmost importance. For instance, 
as cells age, there may be an increased risk of abnormal 
cellular behaviors, and potential risks such as tumor for-
mation associated with MSC therapies must be carefully 
addressed [146, 147]. Developing standardized protocols 
for the isolation, expansion, and administration of MSCs 
is highly necessary in the context of aging. The aging 
process can affect the characteristics of MSCs, mak-
ing it essential to have consistent procedures to ensure 
reproducibility and efficacy across studies [148, 149]. 

Moreover, extensive clinical trials designed to meet regu-
latory standards are needed before MSC-based therapies 
gain wide clinical acceptance, particularly in complex 
aging condition like neurodegeneration.

Neural stem cells (NSCs)
Cell sources  NSCs has gained significant attention over 
the past few decades as a potential treatment for neu-
rodegenerative disease [150]. They are multipotent cells 
capable of differentiating into neurons, astrocytes, and 
oligodendrocytes. NSCs can be obtained for therapeutic 
purposes through several methods: isolation from fetal or 
adult brain tissue where NSCs naturally reside [151], dif-
ferentiation from PSC [152], and direct reprogramming 
of somatic cells into NSCs by introducing specific TFs or 
chemical compounds [153].

NSCs-based therapy  In the R3 paradigm, NSC-based 
therapy primarily fosters regeneration and replacement 
by generating new neurons and glial cells, which helps 
rejuvenate the brain. Specifically, NSCs replace aged or 
damaged cells, promote a healthy neural environment, 
and enhance neurogenesis to counteract the decline 
linked with aging and neurodegeneration [154–157]. Pre-
clinical studies of NSCs-based therapy in animal models 
have shown promising results, with NSCs promoting neu-
ral repair, reducing inflammation, and improving function 
in conditions like ALS, PD and AD [150].

ALS&MS  In mouse models of ALS, implanted human 
NSCs have been effective in delaying disease onset and 
progression and increasing survival by producing neuro-
trophic factors and reducing neural inflammation [158–
160]. The FDA approved the first Phase I clinical trial in 
2009 for transplanting human spinal cord-derived NSCs 
into ALS patients, followed by a Phase II trial [161–163]. 
These trials, which involved transplanting NSCs into the 
spinal cords of 6 and 18 ALS patients, respectively, did not 
show serious adverse reactions or accelerated disease pro-
gression [164, 165]. Clinical trials have also explored allo-
geneic NSC transplantation in patients with progressive 
MS, demonstrating that the procedure is well-tolerated, 
feasible, and safe, and it helped slow disease progression 
[162, 166, 167]. However, other trials have noted potential 
side effects, such as acute neurological deterioration and 
central pain syndrome [168].

PD  Recent studies reveal NSC secretions can protect PD 
neurons, improving both motor and non-motor functions 
and preserved dopaminergic neurons in PD rats [169–
171]. In PD animal models, NSC or neural progenitor cell 
transplants have consistently shown positive therapeu-
tic outcomes [172–174]. In PD mice, NSCs that express 
dopamine-related markers increased astrocyte and 
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microglia presence and enhanced non-phosphorylated 
neurofilaments in the motor cortex, improving hyper-
activity and gait [175]. In clinical trials, human neural 
progenitor cells/NSCs were transplanted into the dorsal 
putamen of eight patients with moderate PD, proving safe 
without immune or adverse reactions, and most patients 
showed motor improvements [176, 177]. Another trial 
involving NSC transplants into the striatum of 21 PD 
patients showed significant symptom improvement with 
no side effects, such as tumor formation or immune rejec-
tion [178].

AD  NSC transplantation is a promising therapeutic 
approach for AD, as NSCs can differentiate into cholin-
ergic neurons, thus replacing and improving lost neurons 
[179]. They also enhance neuronal connectivity and meta-
bolic activity in AD through compensatory mechanisms, 
preserving cognitive function [180, 181]. NSCs have 
also been shown to reduce amyloid-beta plaques, either 
through direct interaction or by modulating the immune 
response [179].
Despite these promising aspects, several challenges 
remain. Key issues include ensuring the long-term 

survival and integration of transplanted cells, preventing 
tumorigenesis, and understanding the complex interac-
tions between NSCs and host brain tissue [150]. Ongoing 
advancements in NSC differentiation protocols, delivery 
methods, and safety measures aim to address these chal-
lenges. Overall, NSC therapy provides a comprehensive 
approach to treating neurodegenerative diseases by sup-
porting rejuvenation and combating senescence.

Potential mechanisms of stem cell therapies
The underlying mechanisms of stem cell therapy are 
complex and multifaceted, encompassing neuronal 
replacement, paracrine mechanisms, immune modula-
tion, neurotrophic support, mitochondrial transfer [183, 
184] (Fig. 3).

Neuronal replacement  One of the primary mechanisms 
by which stem cell therapy operates is through neuronal 
replacement (the “replacement” aim of the R3 paradigm) 
[185–187], thereby addressing the fundamental prob-
lem of neuronal loss and aging. In PD, for instance, stem 
cells can become dopaminergic neurons, integrating into 
existing neural circuits to restore functions [75, 188–191]. 

Fig. 3  Potential mechanisms underlying the stem cell therapies. This schematic illustrates how stem cell–based therapies combat neurodegeneration 
through multiple mechanisms in one integrated approach. Newly grafted or converted neural cells (center) replace or supplement degenerating neurons 
(upper left), while transplanted stem cells or induced cells also bolster neurogenesis (upper right) by differentiating into neurons, astrocytes, oligoden-
drocytes, or interneurons. Moreover, these cells secrete neurotrophic factors (left) that enhance cell survival and plasticity, and release anti-inflammatory 
mediators (lower left) to modulate immune responses involving peripheral macrophages, microglia, and astrocytes. Finally, healthy mitochondria can be 
transferred to damaged neurons (lower right), improving energy production and reducing oxidative stress
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Similarly, hESC-derived neurons can improve motor 
function in Huntington’s disease models [192].

Neurogenesis  Stem cell therapies offer regeneration 
potential by promoting neurogenesis, which is the gen-
eration of new neurons from neural stem cells. During 
neurogenesis, transplanted stem cells migrate to areas like 
the hippocampus, vital for memory and learning, where 
they replenish the neuronal population by generating new 
neurons [193]. Interestingly, stem cell therapy can support 
the activity of endogenous NSCs, enhancing neurogenesis 
by creating a favorable environment and secreting factors 
that promote neural differentiation and growth [132, 193].

Neurotrophic support  Stem cells contribute signifi-
cantly to neurotrophic support by producing and releas-
ing factors like BDNF and GDNF [108, 182, 194, 195] 
and other neurotrophic factors [196, 197]. Administra-
tion of MSC-overexpressing neurotrophic factors such as 
GDNF, vascular endothelial growth factor (VEGF), BDNF 
into mouse model of PD [198], AD [199, 200] and ALS 
[201] resulted in promising in vivo outcomes. This neuro-
trophic support aligns with the rejuvenation aspect of R3, 
preserving neurons and delay senescence of both neurons 
and glial cells, thereby enhancing overall brain health and 
longevity [202, 203].

Anti-neuroinflammation  Neuroinflammation involves 
various chronic, pro-inflammatory, immune system-
mediated processes, mostly allied with neurodegenera-
tion [204–206]. Stem cells modulate immune responses 
by dampening neuroinflammation [207]. In a transgenic 
mouse model of ALS, administration of MSCs could hin-
der disease progress by downregulating inflammatory 
inducible nitric oxide synthase (iNOS) activation [208] 
and suppressing expression of pro-inflammatory cyto-
kines in vivo [208, 209]. This immunomodulatory effect 
is critical for rejuvenation, as it reduces the burden of 
the SASP, which is associated with chronic inflammation 
and contributes to the perpetuation of neurodegenerative 
processes [210].

Mitochondrial transfer  Mitochondrial dysfunction is a 
key factor in the progression of many neurodegenerative 
diseases, and the ability of stem cells to enhance mitochon-
drial function in damaged neurons represents a significant 
therapeutic advantage [211–213]. For instance, restoring 
mitochondrial function in aged NSCs with Piracetam can 
improve hippocampal neurogenesis in vivo in old mice 
[214]. In some studies, MSCs have been shown to transfer 
healthy mitochondria to damaged neurons, which is cru-
cial for restoring cellular energy production and reducing 
oxidative stress [215, 216]. By improving mitochondrial 
function, stem cells support the rejuvenation dimension 

of the R3 paradigm, helping delay cellular senescence and 
maintain the functional integrity of neurons, thus sup-
porting the overall goal of brain rejuvenation [217, 218].

Cellular reprogramming
Direct lineage reprogramming
Direct lineage reprogramming, also known as trans-
differentiation, is a transformative process that converts 
one differentiated cell type directly into another without 
passing through a pluripotent stem cell stage [219, 220]. 
In the context of neuroscience, this method involves con-
verting non-neuronal cells directly into neurons [221], 
offering promising research and therapeutic applications, 
particularly as regenerative strategies for neurodegenera-
tive diseases [222].

Genetic and chemical reprogramming  Genetic meth-
ods typically involve overexpressing specific TFs or 
microRNAs to induce neuronal identity. For example, a 
combination of Ascl1, Brn2, and Myt1l can convert fibro-
blasts or hepatocytes into functional neurons, known as 
induced neurons (iNs) [223, 224]. Similarly, Other TF 
combinations can reprogram fibroblasts and astrocytes 
into neurons or neural stem cells (NSCs) [225–228]. As 
for chemical methods, chemical cocktails consisting of 
Forskolin, CHIR99021, I-BET151, and Wnt/β-catenin 
agonists efficiently convert mouse fibroblasts to neurons 
[229]. A cocktail of CHIR99021 and other molecules 
has been demonstrated to reprogram fibroblasts into 
NSCs [230, 231]. Human fibroblasts were converted to 
vGLUT1-positive glutamatergic neurons using a combi-
nation of specific chemical compounds [232]. Astrocytes 
could also be converted to neurons through chemical 
reprogramming [233–235].

In vitro and in vivo reprogramming  In vitro repro-
gramming involves converting non-neuronal cells, such 
as fibroblasts or glial cells, into neurons within a con-
trolled laboratory environment. Different neuronal sub-
types, including dopaminergic neurons [226, 236, 237], 
glutamatergic neurons [238–240] and motor neurons 
[241], have been generated in vitro. This capability is use-
ful for creating patient-specific neurons for cell replace-
ment therapies. In vivo reprogramming bypass the need 
for cell delivery by converting local glial cells to neurons 
within the brain [242, 243]. This process employs TFs or 
chemical compounds to reprogram cells at the target site. 
Commonly used TFs for neural reprogramming include 
NeuroD1, Ascl1, Brn2, and Myt1l, which together convert 
glial cells into functional neurons [244, 245]. Chemical 
reprogramming in vivo leverages small molecules that 
can modulate signaling pathways, epigenetic states, and 
transcriptional networks to induce cellular reprogram-
ming, especially astrocytes to neurons [246]. A cocktail 
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named FICBY has demonstrated success in transforming 
astrocytes into neurons in vivo [235].

Mechanism of action  n line with the R3 paradigm, 
direct lineage reprogramming supports “Regeneration” or 
“Replacement” by converting non-neural cells (e.g., glial 
cells or fibroblasts) into functional neurons. This process 
allows for neuron regeneration directly at injury sites, 
promoting repair and restoring function in neurodegen-
erative diseases while avoiding challenges associated with 
stem cell transplantation, like cell delivery and integration.

Advantages   Direct lineage reprogramming avoids the 
risks of tumorigenesis associated with pluripotency in 
iPSCs or ESCs [219, 220]. In vivo reprogramming allows 
conversion within the brain’s intrinsic environment, sup-
porting better integration and functionality [247]. It also 
reduces the need for cell transplantation, lowering the risk 
of immune rejection. Additionally, since patient-specific 
cells can be directly reprogrammed into neurons, this 
technique holds great potential for creating personalized 
models of neurological diseases.

Challenges   Reprogramming can result in incomplete 
transformation and integration into neural networks, 
with potential off-target effects [248]. Ensuring the func-
tionality and maturity of reprogrammed neurons in vitro, 
is challenging, as is their survival post-transplantation. In 
vivo methods require precise control to avoid aberrant 
reprogramming, which could lead to tumorigenesis or 
other adverse effects [222]. Additionally, the efficiency of 
reprogramming and long-term survival of newly gener-
ated neurons are critical issues that need addressing.

Partial reprogramming
Partial reprogramming, which aligns with the rejuvena-
tion aspect of the R3 paradigm, involves the temporary 
activation of OSKM factors (OCT4, SOX2, KLF4, and 
c-MYC) to reverse cellular aging effects, such as telo-
mere shortening, mitochondrial dysfunction, and altered 
gene expression [207, 249, 250]. This rejuvenation effect 
is achieved without pushing the cells into a fully plurip-
otent state, which would erase their identity and lead to 
potential risks such as tumorigenesis.

Therapeutic potential  Several studies have demon-
strated the potential of partial reprogramming to induce 
rejuvenation across a variety of tissues in mice includ-
ing pancreas and muscle [251, 252], to different extents 
depending on the cell type [253–255]. In a study, mice 
subjected to periodic activation of OSKM factors exhib-
ited reduced signs of aging, improved tissue regeneration, 
and better overall health, suggesting that partial repro-
gramming can be an effective strategy for promoting reju-

venation [256]. Another study demonstrated that partial 
reprogramming increased the lifespan of older mice by 
109% compared to controls [257].

Partial reprogramming has also emerged as a promis-
ing approach for treating neurodegenerative diseases 
[258, 259], with effects observed in the spinal cord [260] 
and brain regions such as the optic nerve, hippocampus, 
and striatum [261–264]. Improvements have been noted 
in neuroblast populations in aged neurogenic niches 
with whole-body partial reprogramming [265]. Another 
promising application of partial cell reprogramming in 
brain is restoration of visual function [262]. When induc-
ible OSK-containing AAV9 was delivered to the retinal 
ganglion cells of old mice via intravenous delivery, con-
tinuous expression of OSK factors led to a partially 
restored vision [262].

Mechanism of action   Partially reprogrammed mice 
apparently exhibited rejuvenation of certain cellular phe-
notypes, including the reduction of mitochondrial ROS 
and restoration of H3K9me levels [249]. Cyclic cell par-
tial reprogramming was shown to return the transcrip-
tome, lipidome, and metabolome of multiple tissues to a 
younger state [253]. Interestingly, targeting partial repro-
gramming specifically to the neurogenic niche also boosts 
the proportion of neuroblasts and their precursors in old 
mice and improves several molecular signatures of aging, 
suggesting that the beneficial effects of reprogramming 
are niche intrinsic [265]. Additionally, in cellular mod-
els, partial reprogramming has been shown to rejuvenate 
aged human cells, making them function more like their 
younger counterparts [252]. This includes improvements 
in cellular metabolism, reduced oxidative stress, and 
enhanced DNA repair mechanisms, all of which contrib-
ute to a more youthful cellular phenotype [252].

Benefits and risks  The benefits of partial reprogramming 
using OSKM factors include potential neuronal regenera-
tion and neuroprotection from degenerative diseases like 
AD and PD, along with reduced secondary degeneration 
from neuroinflammation and oxidative stress [252]. How-
ever, risks include potential tumorigenesis from improper 
regulation of pluripotency activation that increase prolif-
eration and suppress somatic cell identity [252, 266, 267], 
leading to unwanted cell proliferation [268, 269]. Issues 
such as incomplete reprogramming, coding mutations, 
and cell heterogeneity pose complications for therapeutic 
applications [270, 271]. Additionally, unintended differ-
entiation pathways could form non-functional or mal-
adaptive cells, with examples of liver and intestinal failure 
noted from continuous Yamanaka factor expression in 
mice [272, 273]. Therefore, robust pre-clinical and clinical 
evaluations are critical to determine the safety and effi-
cacy of partial reprogramming before its clinical adoption.
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Challenges and future directions in treating 
neurodegenerative diseases
Cell-based strategies rooted in the R3 paradigm (reju-
venation, regeneration, and replacement) hold great 
promise in regenerative medicine for neurodegenerative 
diseases. However, several challenges specific to this con-
text need to be overcome.

Limited survival and engraftment in aging context  In 
the aging population, mechanical stress during implanta-
tion, loss of extracellular matrix, and nutrient and oxygen 
deprivation are exacerbated, along with host inflamma-
tory responses, often leading to significant cell death 
post-transplantation [274]. This issue is compounded 
by the age-related decline in adult stem cell functional-
ity, reducing the efficacy of regenerative therapies [275]. 
The disparity between results in animal models and aged 
human patients emphasizes the need for more relevant 
pre-clinical models and a better understanding of age-
related stem cell changes [275]. Furthermore, the transla-
tion of cellular therapies from “bench to bedside” remains 
challenging due to various intrinsic and extrinsic barriers, 
including manufacturing, regulatory, reimbursement, and 
clinical adoption issues [276].

Safety and efficacy evaluation in neurodegenerative 
diseases  Comprehensive assessment of safety and effi-
cacy is crucial. While pre-clinical data are promising, 
clinical trials must determine the true safety and effec-
tiveness in humans with neurodegenerative diseases. Rig-
orous trial protocols and appropriate outcome measures 
are required. Long-term follow-up is essential to detect 
potential late-emerging adverse effects, such as in par-
tial reprogramming, where long-term consequences like 
tumorigenesis or epigenetic instability need to be ruled 
out.

Personalized medicine for heterogeneous neurode-
generative diseases  Given the heterogeneity of neu-
rodegenerative diseases, personalized medicine is vital. 
Biomarkers are needed to predict patient responses. For 
stem cell therapy, these could be based on genetic profiles, 
disease stages, and cellular damage levels to select suitable 
candidates [277]. Similar considerations apply to direct 
lineage and partial reprogramming to identify patients 
likely to benefit and those at risk [278–281].

Regulatory and ethical challenges in aging-related 
therapies  The development and application of these 
R3-based strategies raise regulatory and ethical questions 
[282]. Regulatory requirements for different applications, 
especially involving stem cell-derived tissue constructs in 
neurodegenerative disease treatment, are complex and 
lack clear guidance [283]. Ethical issues include impli-

cations for donors, risks related to iPSCs like unwanted 
differentiation or malignancy, and concerns about MSCs 
promoting tumor growth, especially in the context of an 
aging population seeking these therapies [284].

Conclusion
Remarkable progress has been made in R3-focused cell-
based strategies for treating neurodegenerative diseases. 
Advances in stem cell therapy, direct lineage repro-
gramming, and partial reprogramming offer promising 
solutions for addressing cellular deficits. Emerging tech-
nologies like gene editing and combinatorial therapies 
provide additional opportunities. However, challenges 
such as cell and factor delivery and integration, safety and 
efficacy evaluation, personalized medicine, and regula-
tory and ethical considerations still exist. Overcoming 
these challenges requires continued research, collabora-
tion, and innovation. With further progress, R3-based 
therapies have the potential to transform the treatment 
of neurodegenerative diseases and bring new hope to 
patients.
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